Adaptive stress signaling in targeted therapy resistance in cancer
نویسندگان
چکیده
The identification of specific genetic alterations that drive the initiation and progression of cancer and the development of targeted drugs that act against these driver alterations has revolutionized the treatment of many human cancers. While substantial progress has been achieved with the use of such targeted cancer therapies, resistance remains a major challenge that limits the overall clinical impact. Hence, despite progress, new strategies are needed to enhance response and eliminate resistance to targeted cancer therapies in order to achieve durable or curative responses in patients. To date, efforts to characterize mechanisms of resistance have primarily focused on molecular events that mediate primary or secondary resistance in patients. Less is known about the initial molecular response and adaptation that may occur in tumor cells early upon exposure to a targeted agent. Although understudied, emerging evidence indicates that the early adaptive changes by which tumor cells respond to the stress of a targeted therapy may be crucial for tumor cell survival during treatment and the development of resistance. Here, we review recent data illuminating the molecular architecture underlying adaptive stress signaling in tumor cells. We highlight how leveraging this knowledge could catalyze novel strategies to minimize or eliminate targeted therapy resistance, thereby unleashing the full potential of targeted therapies to transform many cancers from lethal to chronic or curable conditions.
منابع مشابه
Resistance to HER2-targeted therapy
Production and approval of trastuzumab (Herceptin®) for the treatment of metastatic breast cancer (MBC) was a millstone in antibody-based targeted therapy in the cancer treatment. However, despite the early success in the clinical trials, trastuzumab failed to appreciate the initial attraction due to development of resistance to the drug. The majority of patients who benefit from the drug...
متن کاملSingle-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma.
Intratumoral heterogeneity of signaling networks may contribute to targeted cancer therapy resistance, including in the highly lethal brain cancer glioblastoma (GBM). We performed single-cell phosphoproteomics on a patient-derived in vivo GBM model of mTOR kinase inhibitor resistance and coupled it to an analytical approach for detecting changes in signaling coordination. Alterations in the pro...
متن کاملPI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملTargeted therapy by disabling crossroad signaling networks: the survivin paradigm.
Embedded in the concept of targeted cancer therapy is the expectation that disabling a single oncogenic pathway will eliminate the tumor cells and leave the normal tissues unscathed. Although validated by clinical responses in certain malignancies, challenges exist to generalize this approach to most tumors, as multiple genetic lesions, chromosomal instability, insensitivity of the cancer stem ...
متن کاملTargeted cancer therapy: review article
Cancer is one of the most dangerous health problems of today modern societies which has an increasing rate especially in developing countries. There are many diverse ongoing treatment attempts trying to defeat cancer. Despite that, scientists have been unable to find a permanent cure for this disease. In many cases although there is a successful first response in patients, cancer cells are fina...
متن کامل